If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-252=0
a = 3; b = 6; c = -252;
Δ = b2-4ac
Δ = 62-4·3·(-252)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{85}}{2*3}=\frac{-6-6\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{85}}{2*3}=\frac{-6+6\sqrt{85}}{6} $
| -2(2.5x+8)=26* | | 2−8/−3x=11 | | 7y-11=139 | | 5x=25+100 | | 1.6=0.2n+2.4 | | –6f=–4f+6 | | 80=3x+5) | | 5a-1+a=12 | | 5x-x+4x=9 | | F(2)=3x^2-15 | | 3(4v-5.)=-51 | | 4/8=c/8 | | -3(2c+4)=5(6-c) | | 9x-18=7(x-2) | | F(x)=3x-9x+12 | | 15+4n=39 | | 4(3d-2)=88d-5 | | 3(a+7)=-2(8-a) | | -4(-5x+3)-3x=2(x-1)-7 | | 3(a+7=-2(8-a) | | ⅓(3g-2)=g/2 | | 5/12=5/6(z+2) | | z14=2 | | 12(3x+4)=10x+15 | | -0.5x-4=20 | | 20-5w-5=5(w-10)+15 | | -4x+27=13+3x | | 4y+43=-9(y+1) | | 0.089=t^2 | | 3(6-w)=-3(w-5)+3 | | 4b+8=7b+8−3b | | -5-4x=10+2x |